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1. 

Vibrations of continuous systems are modelled in the form of a partial differential equation
system. In seeking approximate analytical solutions of these systems, one common choice
is to discretize the partial differential equation system and then to apply perturbation
methods to the resulting ordinary differential system (the discretization-perturbation
method). An alternative approach is to seek approximate solutions of the original partial
differential system. In this approach, perturbation methods are applied directly to the
partial differential system (the direct-perturbation method). Comparisons of these two
methods have appeared in the literature for various mathematical models [1–7]. Some of
the work has addressed the comparisons for finite mode truncations [1–4] and some others
for infinite modes [4–7]. It is shown that, while both methods produce identical results for
infinite number of modes, the direct-perturbation method produces more accurate results
for finite mode truncations. This is because the spatial functions appearing at higher orders
of approximation represent the real system better in the case of the direct-perturbation
method. It is shown that [5], for finite mode truncations, the spatial functions are the
converged functions obtained by using the infinite series of eigenfunctions calculated at
the first level of approximation. However, for the discretization-perturbation method, the
spatial functions appearing at higher orders of approximations are only approximate,
reducing the accuracy of the overall system.

In all of the previous work [1–7], comparisons have been made for non-linear systems,
especially for systems having quadratic and cubic non-linearities. No discussions are
presented for linear systems. This may lead one to conclude that the differences in results
occur due to the non-linearities. However, such a conclusion would be wrong. Differences
in results arise even for linear systems. As an illustration, we present here a case of a linear
parametrically excited system. Instead of treating a specific problem, the formalism given
in references [2] and [5] is followed and solutions are presented for arbitrary spatial
operators. The algorithms developed are then applied to a specific problem. Differences
in results occur if a higher order perturbation scheme is employed and if the boundary
value problems appearing at higher orders of approximations yield different solutions in
the case of direct treatment.

It is to be noted that results of the discretization-perturbation method would converge
to those of the direct-perturbation method if the number of modes taken into consideration
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are increased. The convergence property mainly depends on the specific choice of
eigenfunctions. For some cases, the convergence might be very poor, requiring a large
number of modes, which is usually impractical. Alternatively, one may choose to attack
the same problem using direct perturbation method with fewer modes.

2.   

We treat the following parametrically excited, linear, non-dimensional partial
differential system:

ẅ+ m̂ẇ+L0(w)+ o(F(x) cos Vt)L1(w)=0, (1)

B1(w)=0 at x=0, B2(w)=0 at x=1, (2)

where w(x, t) is the response, m̂ is the damping coefficient, o is a small dimensionless
parameter, and F(x) and V are the parametric excitation amplitude and frequency,
respectively. L0, L1, B1 and B2 are arbitrary linear spatial differential and/or integral
operators. The dot denotes differentiation with respect to time t and the prime denotes
differentiation with respect to the spatial variable x.

Defining a new time variable

T=(V/2)t (3)

we transform equation (1) to the following more convenient form for approximate
analysis:

V2

4
ẅ + m̄ẇ+L0(w)+ o(F(x) cos 2T)L1(w)=0, (4)

where

m̄= m̂(V/2). (5)

We will investigate the steady state solutions of equation (4) for the case of principal
parametric resonances (V2 2v, v being the natural frequency of the unperturbed system).
Solutions will be presented using both the direct-perturbation method and the
discretization-perturbation method.

3. - 

A higher order perturbation scheme will be applied to the partial differential system
governed by equations (4) and (2). The version of the method of multiple scales first
proposed by Rahman and Burton [8] will be employed, since this method is more accurate
in predicting the steady state response compared to the usual method of reconstitution.
We assume expansions of the form

w(x, T; o)=w0(x, T0, T1, T2)+ ow1(x, T0, T1, T2)+ o2w2(x, T0, T1, T2)+ · · · , (6)

V2 =4(v2 + os1 + o2s2 + · · ·), m̄= om1 + o2m2 + · · · , (7, 8)

where T0 =T is the usual fast-time scale, and T1 = oT and T2 = o2T are the slow-time
scales. Time derivatives are represented as

d/dT=D0 + oD1 + o2D2 + · · · , d2/dT2 =D2
0 +2oD0D1 + o2(D2

1 +2D0D2)+ · · ·. (9)
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Substituting equations (6)–(9) into equations (4) and (2), and separating terms at each
order of o, we have the following:

Order 1: v2D2
0w0 +L0(w0)=0, B1(w0)=0 at x=0, B2(w0)=0 at x=1; (10, 11)

Order o: v2D2
0w1 +L0(w1)=−2v2D0D1w0 − s1D2

0w0 − m1D0w0 − (F cos 2T0)L1(w0), (12)

B1(w1)=0 at x=0, B2(w1)=0 at x=1; (13)

Order o2: v2D2
0w2 +L0(w2)=−2v2D0D1w1 −v2(D2

1 +2D0D2)w0

− s1D2
0w1 −2s1D0D1w0 − s2D2

0w0 − m1D0w1

− m1D1w0 − m2D0w0 − (F cos 2T0)L1(w1), (14)

B1(w2)=0 at x=0, B2(w2)=0 at x=1. (15)

At order 1, the solution is

w0 = (A(T1, T2) eiT0 + cc)Y(x), (16)

where cc denotes the complex conjugate of the preceding terms. The Y(x) functions satisfy
the differential system

L0(Y)−v2Y=0, B1(Y)=0 at x=0, B2(Y)=0 at x=1, (17)

and are normalized such that f1
0 Y 2 dx=1. The above problem is an eigenvalue–

eigenfunction problem.
Substituting equation (16) into the right side of equation (12), assuming a solution for

w1 of the form

w1 =81(x, T1, T2) eiT0 +W1(x, T0, T1, T2)+ cc, (18)

we obtain

L0(81)−v281 =−2iv2D1AY+(s1 − m1i)AY−
F
2

L1(Y)A�, (19)

B1(81)=0 at x=0, B2(81)=0 at x=1, (20)

v2D2
0W1 +L0(W1)=−

F
2

L1(Y)(A e3iT0 + cc), (21)

B1(W1)=0 at x=0, B2(W1)=0 at x=1. (22)

The homogenous problem of equations (19) and (20) possesses a non-trivial solution. For
the non-homogenous problem to possess a solution, a solvability condition should be
satisfied [9]. The condition is

2iv2D1A=(s1 − m1i)A− aA�, (23)

where

a= 1
2 g

1

0

FYL1(Y) dx. (24)
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For steady state solutions, D1A=0 and, substituting the polar form A=1/2a eib in
equation (23), we find the first correction to the frequency,

s1 = 3za2 − m2
1. (25)

Having eliminated the secular terms, we are left with equations (21) and (22). A solution
may be written of the form

W1 = 1
2(Ae3iT0 + cc)f(x), (26)

where f(x) satisfy the boundary value problem

L0(f)−9v2f=−FL1(Y), B1(f)=0 at x=0, B2(f)=0 at x=1. (27)

The boundary value problem at the first order (equation (17)) and the boundary value
problem at the second order (equation (27)) would yield different spatial functions in
general. It is shown in reference [5] that the f(x) functions are the converged functions
of the infinite sum of eigenfunctions Y and hence represent the spatial variation of the real
system better at this order of approximation. In contrast to this, in the
discretization-perturbation method, the spatial variations would be assumed to be
represented by the same Y(x) functions at this order of approximation, leading to
inaccuracy.

The solvability condition at order o2 is

2iv2D2A=(s2 − m2i)A− gA, (28)

where

g= 1
4 g

1

0

FYL1(f) dx. (29)

For steady state solutions, D2A=0 and the second correction to the frequency and
damping are

s2 = g, m2 =0. (30)

Hence the excitation frequency is found to be

V2 =4(v2 3 oza2 − m2
1 + o2g+· · ·). (31)

Using the polar form for the complex amplitudes, changing back to the original time
variable t, we find the approximate response:

w(x, t; o)= a cos 0V2 t+ b1Y(x)+ o
a
2

cos 03V

2
t+ b1f(x)+O(o2). (32)

In the next section, we find the approximate frequency and response function using
discretization-perturbation method.

4. - 

In this section, we solve the same problem, this time by first discretizing the equations
and then by applying perturbations to the resulting equations. Similarly to the previous
analysis, we assume a single-mode discretization of the form

w(x, T)= q(T)Y(x), (33)
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where the Y(x) satisfy equation (17). Substituting equation (33) into equation (4),
multiplying the equation by Y(x), and integrating over the domain, we have

V2

4
q̈+ m̄q̇+v2q+ o(cos 2T)2aq=0, (34)

where a is defined in equation (24). Assuming the expansion

q(T; o)= q0(T0, T1, T2)+ oq1(T0, T1, T2)+ o2q2(T0, T1, T2)+ · · · (35)

and substituting equation (35) together with equations (7)–(9) into equation (34), we obtain
the following:

Order 1: v2D2
0q0 +v2q0 =0; (36)

Order o: v2D2
0q1 +v2q1 =−2v2D0D1q0 − s1D2

0q0 − m1D0q0 − (2a cos 2T0)q0; (37)

Order o2: v2D2
0q2 +v2q2 =−2v2D0D1q1 −v2(D2

1 +2D0D2)q0 − s1D2
0q1

− 2s1D0D1q0 − s2D2
0q0 − m1D0q1 − m1D1q0

− m2D0q0 − (2a cos 2T0)q1. (38)
The solution at order 1 is

q0 =A(T1, T2) eiT0 + cc. (39)

Substituting this solution into the right side of equation (37), and eliminating the secular
terms yields

2iv2D1A=(s1 − m1i)A− aA�. (40)

Comparing equation (40) with equation (23), we see that the results are identical up to
this order of approximation. The first correction to the frequency is the same as given in
equation (25).

Now solving equation (37), we obtain

q1 =
a

8v2 (A e3iT0 + cc). (41)

In this approach, the spatial variation is again assumed to be represented by Y(x).
However, in the previous section, it is shown that the spatial variation is represented by
a different function, f(x). This difference will affect the results at the next order of
approximation.

Substituting equations (39) and (41) into the right side of equation (38), and eliminating
the secular terms, we obtain

2iv2D2A=(s2 − m2i)A−
a2

8v2 A. (42)

Requiring D2A=0 for steady state solutions, substituting the polar form, and separating
the real and imaginary parts, we obtain

s2 =
a2

8v2 , m2 =0. (43)

Hence, the frequency is determined up to O(o2):

V2 =4(v2 3 oza2 − m2
1 + o2(a2/8v2)+ · · ·). (44)



   830

Comparing equations (44) and (31), we see that results differ at O(o2). In general, g is not
equal to a2/8v2. The approximate response is

w(x, t; o)= a cos 0V2 t+ b1Y(x)+ o
aa
8v2 cos 03V

2
t+ b1Y(x)+O(o2). (45)

Comparing equations (45) and (32), we see that the responses differ at O(o), due to the
spatial variations. Note that all of the results in this section, as well as those in the previous
section, can be retrieved using the Lindstedt–Poincaré technique.

5.  

In this section, the algorithms developed in sections 3 and 4 are applied to a specific
problem. We consider the following simple equation so that the integrals are easier to
handle:

ẅ+ m̂ẇ −w0+ o(F cos Vt)(b1w+ b2w')=0, w(0, t)=w(1, t)=0. (46, 47)

The specific operators are

L0(w)=−w0, L1(w)= b1w+ b2w'. (48)

Since solutions are presented for the general case in the previous sections, all we need is
to calculate Y(x), v, a, f(x) and g. Y(x) is determined by the boundary value problem
in equation (17) or

Y0+v2Y=0, Y(0)=Y(1)=0. (49)

The solution is

Y=z2 sin npx, v= np, n=1, 2, . . . . (50)

Assuming F to be constant, a is calculated from equation (24):

a= 1
2Fb1. (51)

f(x) can now be calculated from the boundary value problem given in equation (27)

f0+9v2f=F(b1Y+ b2Y'), f(0)=f(1)=0. (52)

The solution is

f(x)=
Fz2
8n2p2 [b2np(cos npx−cos 3npx)+ b1 sin npx]. (53)

g is calculated from equation (29):

g=
F 2

32n2p2 (b2
1 − b2

2n2p2). (54)

Hence the frequencies for the two cases are as follows:
Direct-perturbation method,

V2 =4 0n2p2 3 oXF 2b2
1

4
− m2

1 + o2 F 2

32n2p2 (b2
1 − b2

2n2p2)+ · · ·1 . (55)
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Discretization-perturbation method,

V2 =4 0n2p2 3 oXF2b2
1

4
− m2

1 + o2 F2b2
1

32n2p2 + · · ·1 . (56)

Note that the information regarding b2 is lost at O(o2) in the discretization-perturbation
method.

The responses are as follows:
Direct-perturbation method,

w(x, t; o)= az2 cos 0V2 t+ b1 sin npx+ o
aFz2
16n2p2 cos 03V

2
t+ b1

×[b1 sin npx+ b2np(cos npx−cos 3npx)]+O(o2); (57)

Discretization-perturbation method,

w(x, t; o)= az2 cos 0V2 t+ b1 sin npx+ o
aFz2
16n2p2 cos 03V

2
t+ b1[b1 sin npx]+O(o2).

(58)

Comparing equations (57) and (58), we again conclude that information regarding b2 is
lost in the discretization-perturbation method. The spatial variation at O(o) in equation
(57) is in fact the converged infinite sum of eigenfunctions multiplied by appropriate
constants [5] and hence better represents the real system. Note that an infinite mode
analysis would yield identical results.

6.  

Depending on the analysis presented here as well as on the previous work [1–7], the
following conclusions are of vital importance:

(1) The results of the direct-perturbation method and the discretization-perturbation
method would be identical for infinite modes.

(2) The direct-perturbation method would yield better results compared to
discretization-perturbation method for finite mode truncations if (a) a higher order
perturbation scheme were used; (b) the boundary value problems were to yield different
solutions at each order of approximation for the direct-perturbation method.

(3) The above conclusions are valid for both linear and non-linear systems.

If higher order perturbation schemes are not used, both methods yield identical results.
However, the choice of orthogonal basis functions might not be so straightforward for
some more involved cases and a transformation of equations to a convenient form may
be needed. In such cases, employing the direct-perturbation method would be more
straightforward, at the expense that the algebra might be more involved.

Finally, the conclusions are not restricted to vibrations of continuous systems, but are
valid in general for any physical problem modelled in the form of partial differential
equations.
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